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What is ‘Big Data’?

▶ A: many samples, relatively few variables per sample

practical problems

(solved by larger disks,
faster computers,
parallelization of
existing algorithms)

▶ B: many variables per sample, relatively few samples

conceptual problems

– lack of intuition
– lack of appropriate methods

genomic data, images, ...

here conventional multi-variate methods
break down due to overfitting



Precision Cancer Medicine

deep characterization of patients
in order to personalize therapy

▶ data with thousands or more
measurements per patient

▶ but usually not with even
larger numbers of patients

so: big data type B ...
(more measurements than samples,

overfitting danger)

we cannot yet use these data
fully and reliably without new methods ...



Precision Cancer Medicine

map latent heterogeneity
in diseases and their hosts

▶ identify drug responder subgroups,
distinct in treatment associations?
distinct in time courses?

impact of ageing populations

▶ interacting co-morbidities,
decontaminate inferences for
false aetiology/protectivity

▶ longitudinal survival analysis

precision cancer medicine requires more complex statistical models
(making the sample size problem worse ...)



AI and Deep Learning
fancy names,
fancy pictures ...

let’s open the box:
1980s architectures, 1980s learning rules ...



Standard AI

▶ suitable problems

– many data of the type (question + answer)
– no need for explanations

e.g. speech recognition, digital pathology

▶ limitations of AI in medicine

– ‘black box’ decisions without reliable error bars
– cannot handle complexities such as

confounders, disease interactions, latent heterogeneity
– no counterfactual reasoning



Dangers of AI hyping ...



Main success stories of AI in medicine

▶ segmentation and feature detection in clinical images

– as accurate as humans
– but massively faster and cheaper



Corollary

▶ modern cancer research needs new quantitative tools
– sample size problems
– complexities of heterogeneous and elderly populations
– interpretable

▶ AI is excellent in digital pathology
– (so far) unable to deal with above challenges
– but can inspire new statistical algorithms ...

Statistical innovation for cancer research

▶ unfortunately very slow ...
– journals discourage non-standard methods (‘our readership ...’)
– who writes the industry-standard user-friendly code?

(no programmers in stats departments → spin-outs)
– epidemiologists too busy with routine tasks
– statisticians see limited benefit in reaching out



Proposals for analytical innovation in cancer research
for which validated methodology already exists!

1. Include more covariates / do more with fewer samples
– overfitting correction methods
– federated Bayesian inference

2. Longitudinally updated personalized survival prediction
– being alive later changes survival curves, even without involving data

3. Inference of personalized optimal treatment dose
– via interaction terms in existing survival analysis models

4. Correct predictions for interacting comorbidities
– decontaminated survival curves
– decontaminated associations and hazard ratios

5. Identification of responders in phase 2 or 3 cancer trials
– more options for patients via rescue of failed trials
– prevention of pointless side effects
– better use of cancer research funds



Remainder of this talk:

examples of new quantitative tools
for cancer research

▶ Bayesian
Federated
Inference (BFI)

▶ Overfitting correction
methods and pipelines
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▶ Responder subgroup
identification in cancer trials



Bayesian Federated Inference
harness the power of large datasets without creating large data sets

The problem

multivariate analysis requires
large data sets to avoid overfitting

rare diseases: always small data sets ...

Possible solutions

1. more effective mechanisms and
incentives for data sharing

2. technology for integration of
individual analysis outcomes

reconstruct from local analyses on data subsets
what would have been found if these had been
combined into a single larger data set



2017: Federated Machine Learning

disadvantages

– many iterations needed
– complex infrastructure
– labour intensive
– data security difficult to control
– black box algorithms
– predictions without error bars

2020: Bayesian Federated Inference

– only one (more complex) analysis needed
– no convergence issues
– no data security issues
– fully interpretable statistical models
– predictions with error bars



Pilot tests of BFI on real data
trauma patients from different hospitals,
4 covariates, outcome: death (yes/no)

data subsets size mortality age gender ISS GCS
nℓ % median % females median median

peripheral hospitals without NSU 49 43 42 22 41 11
peripheral hospitals with NSU 106 40 34 24 33 14
academic hospitals 216 22 35 30 29 11
combined data 371 30 36 27 30 12

(NSU: neuro-surgical unit)

death probabilities:

combined set (p Com) versus
BFI-reconstructed (p BFI)
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Ongoing BFI research
how to handle protocol differences between centres

compare two chemotherapies, A and B,
using data from two medical centres

CHEMO A CHEMO B

medical centre 1 40% (40/100) 30% (150/500)
medical centre 2 18% (36/200) 15% (12/80)

both centres agree:
A is better

now combine our data!

CHEMO A CHEMO B

medical centre 1 40% (40/100) 30% (150/500)
medical centre 2 18% (36/200) 15% (12/80)
response rate 25% (76/300) 28% (162/580)

are we still sure?
(Simpson’s paradox)



Overfitting Correction Methods and Pipelines
based on mathematical understanding of overfitting

Cox-inferred versus true association parameters
(simulated survival data)

covariates/samples = 0.002
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▶ effect on regression parameters: inflation + noise
▶ both can be predicted mathematically,

→ correction formulae → fewer samples needed



example: 400 samples,
250 covariates (of which only a few informative)

uncorrelated
covariates

true associations Cox regression corrected
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correlated
covariates
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Automated pipeline:
SaddlePoint Signature

preprocessing

normalization, imputation
informative missingness,
multiplexing

-

 0

 5

 10

 15

 20

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

covariate pre-selection

univariate regression,
correlation with outcome,
relative to randomized

-

main regression loop

backward iteration, 104 randomizations each
L2 priors with adaptive hyperparameters
replica theory overfitting correction
probabilistic removal criterion

?
covariate selection

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70

training

validation

optimal covariate set

�

robust signatures

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

c
o

v
a

ria
te

1

c
o

v
a

ria
te

2

c
o

v
a

ria
te

3

c
o

v
a

ria
te

4

c
o

v
a

ria
te

5

c
o

v
a

ria
te

6

c
o

v
a

ria
te

7

c
o

v
a

ria
te

8

c
o

v
a

ria
te

9

c
o

v
a

ria
te

1
0

c
o

v
a

ria
te

1
1

c
o

v
a

ria
te

1
2

c
o

v
a

ria
te

1
4

c
o

v
a

ria
te

1
7

prognostic score (incl covariate interactions)
treatment response score
probabilistic outcome predictions
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Responder subgroup identification
who actually benefits from a cancer drug?
prevent and rescue failed trials

The problem
poor drug targeting

– more failed clinical trials
– fewer treatment options for patients
– pointless side effects
– enormous waste of resources

▶ phase 2 trials:

costs ∼15M$
success rate 50% (cancer 33% ...)

▶ phase 3 trials:

costs ∼30M$
success rate 60% (cancer 36% ...)



Responder subgroups
in failed cancer trials

weak drug benefit, no license ...
(in absence of response biomarker)

Two possibilities

1. reproducible individual response
there are measurable differences between individuals that
explain response variation, we just don’t know what they are ...

cohort is stratifiable, drug can be rescued

2. non-reproducible individual response
there are no measurable differences between individuals
to explain response variation

cohort is not stratifiable, drug cannot be rescued



Bayesian latent class survival analysis

– reports characteristics of latent strata
– fully interpretable
– retrospective stratification: tool for finding subgroup markers
– prospective stratification if covariates informative

Automated pipeline:
SaddlePoint Mosaics

Multi-risk latent class analysis / Regression management

Automated regression management

Automated regression and model ‘likelihood’
score determination for all candidate models
Baseline hazard rate(s), covariate association,
and frailty estimation for each model
Bayesian priors on all parameters

Bayesian model selection

Model summary reports

Automated Bayesian model likelihood determination 
and model ranking
Aikake and Bayesian Information Criterion scores also available

Automated report generation
Hazard ratios, baseline hazard rates
Crude and marginal survival curves
Covariate Pearson correlations

Retrospective class allocation

4

Allocate patients to most probable latent class
Data-driven cohort stratification
Covariate and class membership correlations
Aids search for new informative biomarkers



The COIN trial (colorectal cancer)
n = 398, 1630

PFS

OS



The TOPICAL trial (lung cancer)
n = 580

9.7% 14.0% 45.5% 30.7%

survival curves: green=erlotinib, red=placebo
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